Enrollment No:					Exam Seat No:		
	~		~			~	

C. U. SHAH UNIVERSITY Winter Examination-2021

Subject Name: Linear Electronics

Subject Code: 4TE03LNE1 Branch: B.Tech (CE)

Semester: 3 Date: 11/01/2022 Time: 11:00 To 02:00 Marks: 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1		Attempt the following questions:						
	a)	A transistor has	PN junctions.					
		A) 1	B) 2	C) 4	D) 3			
	b)	The element that has the smallest size in a transistor is						
		A) Collector	B) Base	C) Emitter	D) None			
	c)	The collector of a tra	nsistor is doj	ped.				
		A) Moderately	B) Lightly	C) Heavily	D) None			
	d)	In a transistor, $I_C = 100$ mA and $I_E = 100.5$ mA. The value of α is						
		A) 0.984	B) 0.995	C) 0.975	D) None			
	e)	If the value of collector current I_C decreases, then value of V_{CE}						
		A) remains same	B) decreases	C) increases	D) None			
	f)	The operating point i	s also called the	point.				
		A) Cut-off point	B) Saturation	C) Quiescent	D) None			
	g)	If operating point is s	shifted towards	point then cycl	e will clipped.			
		A)saturation, upper	B) cut off, lower	C) mid-point	D) both A and B			
	h)	For faithful amplification by a transistor circuit, the value of V_{CE} should						
		A) not fall below 1v	B) 0v	C) 0.2V	D) none			
	i)	The element that has the biggest size in a transistor is						
		A) Collector	B) Base	C) Emitter	D) None			
j								
		A) Cut-off			D) None			
	k)	Output resistance of an ideal op-amp						
		A) high	,		D) medium			
	1)	An open loop gain of						
		A) high	B) low	C) infinite	D) medium			
	m)							
		A) 0^{0}	B) 180°	C) 360°	D) Both A and C			
	n)	Which oscillator has highest stability?						
		A) Colpitt's	B) Hartley	C) Crystal	D) None			

Attempt any four questions from Q-2 to Q-8:

Q-2	a)	Attempt all questions Derive the equation for α in terms of β and β in terms of α . Calculate the value of I_E , I_C and α in a transistor for which $\beta = 100$ and $I_B = 30\mu$ A.	(14) 07
	b)	•	07
Q-3	a)	Attempt all questions A transistor is connected in CE configuration in which collector supply is 10V and the voltage drop across resistance R_C connected in the collector circuit is 1.5 V. The value of $R_C = 500\Omega$. If $\alpha = 0.96$, determine V_{CE} and I_B .	(14) 05
	b)	How will you draw dc load line on the output characteristics of a transistor? What is its importance? In a CE transistor circuit, if $V_{CC} = 15V$ and $R_C = 6K\Omega$, draw the dc load line. What will be the Q-point if zero signal base current is $30\mu A$ and $\beta = 50$?	09
Q-4		Attempt all questions	(14)
	a)	What is faithful amplification? State and explain in detail basic conditions must be satisfied for faithful amplification.	07
	b)	Explain in detail fixed base biasing technique with circuit diagram.	07
Q-5	a)	Attempt all questions Explain with a diagram, the working of a transformer coupled class AB	(14) 07
	b)	power amplifier. Explain in detail with diagram inverting and non-inverting amplifier using Op-amp.	07
Q-6		Attempt all questions	(14)
	a)	Explain in detail summing amplifier using Op-Amp with neat circuit diagrams.	07
	b)	Explain in detail Integrator using Op-Amp with neat circuit diagram.	07
Q-7		Attempt all questions	(14)
•	a) b)	Draw and explain in detail current shunt feedback amplifier. Explain with the help of circuit diagram working of RC phase shift oscillator.	07 07
Q-8		Attempt all questions	(14)
	a) b)	Draw and explain in detail voltage series feedback amplifier. Explain with the help of circuit diagram working of colpitt's oscillator.	07 07

